If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n-40=0
a = 1; b = 2; c = -40;
Δ = b2-4ac
Δ = 22-4·1·(-40)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*1}=\frac{-2-2\sqrt{41}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*1}=\frac{-2+2\sqrt{41}}{2} $
| -36+6x=5(-8+x) | | 10+9f=4f | | –11(26n–52)=44(–9n+3) | | -5+m+5=25 | | 3b/2=9/4 | | 37+2x=-7(7x+2) | | 3(x+x)=78 | | 3u−-8=14 | | -29-8x=-5(2x+5)+8 | | 2.50x=1x+15.00 | | 7x-9=7(x-1)+3 | | 3x+2+72+65=180 | | 34-8x=6(1+x) | | 21x+445+3x=1309 | | f-3/6=2.5 | | 25p+6=36 | | 7-2x=-2x-7(7+8x) | | 5n=20-70 | | 12c+8=30 | | -28-6x=-2(8x+2)+6 | | 3x+74=41+14x | | 15=3(x−6) | | 36.98x=99-18.36 | | 4/1=n/6 | | x/4-6=22 | | 7b-9=-12 | | 6x-24=6(4x+2) | | 31x+32=32x-31 | | -4x+4+2x=4 | | -8(1-2x)-4x=-8-3x | | (24.4-1/8x)^2=8(24.4-1/8x)-15 | | 6+7x+x=86 |